Mostrando postagens com marcador patogênica. Mostrar todas as postagens
Mostrando postagens com marcador patogênica. Mostrar todas as postagens

terça-feira, 28 de março de 2023

Fosforilação da sinucleína: patogênica ou fisiológica?

28 March 2023 - Apesar de vários caminhos terapêuticos para o manejo dos sintomas na doença de Parkinson (DP), ainda não há tratamento para o processo degenerativo subjacente. Como resultado, a doença continua a progredir, tornando-se refratária ao tratamento e resultando em incapacidade grave. Para resolver isso, os pesquisadores se concentraram nas proteínas implicadas na DP pela genética humana e, em particular, na proteína α-sinucleína, que se acumula no sistema nervoso de pacientes com DP e nos distúrbios relacionados demência com corpos de Lewy (LBD) e sistemas múltiplos atrofia (MSA). O desdobramento incorreto da sinucleína e a herança dominante da DP devido a mutações na sinucleína e na quinase de repetição rica em leucina 2 (LRRK2) levaram à hipótese de que a doença envolve um ganho de função anormal. Como corolário, a função normal dessas proteínas foi considerada irrelevante para a doença. É verdade que a perda de sinucleína não causa a DP: camundongos knockout sem todas as três isoformas de sinucleína não apresentam perda celular ou sintomas motores parkinsonianos1,2. No entanto, a degeneração surge no contexto da função normal, tornando-se essencial entender o papel fisiológico adaptativo dessas proteínas, que permanece indefinido.

Dettmer, Selkoe e colegas agora abordam o papel fisiológico de uma modificação pós-traducional associada à sinucleína + patologia Lewy característica de PD3. Considerada específica para a DP, a fosforilação da α-sinucleína em Ser-129 (pSer-129)4 tem sido amplamente utilizada para avaliar a magnitude e a extensão da degeneração em modelos animais, bem como na condição humana. Em geral, tem sido considerado um marcador da patologia de Lewy, e o papel de pSer-129 na patogênese tem sido objeto de debate. Vários relatórios implicaram a modificação na toxicidade5,6,7, mas outro sugeriu um efeito inibitório na fibrilação da sinucleína8. E outros estudos não encontraram nenhum efeito da modificação9,10,11. No entanto, nenhum desses estudos se concentrou em um papel fisiológico potencial para pSer-129, embora trabalhos anteriores tenham detectado essa modificação no cérebro normal com alguma regulação por um forte estímulo sensorial12,13. Além disso, esse resíduo é altamente conservado na α-sinucleína, mas não nas isoformas β ou γ, sugerindo um papel adaptativo específico.

No presente estudo, Ramalingam et al. mostram que a atividade neural aumenta pSer-129 ~3 vezes na cultura primária, sem alteração na α-sinucleína total3. Essa indução requer potenciais de ação e transmissão sináptica, indicando que a atividade da rede é responsável. Os autores também observaram um aumento mais modesto em extratos de cérebro após enriquecimento ambiental, apoiando a relevância da atividade na indução de pSer-129 in vivo. Além disso, a atividade-dependência da fosforilação parece específica para Ser129, não para outros sítios conhecidos de fosforilação na α-sinucleína. Para entender como a atividade aumenta pSer-129, os autores identificam a quinase 2 tipo polo (Plk2) como responsável. O Ca++ geralmente medeia o efeito da atividade e os autores descobriram que os canais de Ca++ controlados por voltagem são importantes para a fosforilação, mas Plk2 não é conhecido por responder ao Ca++. Os autores buscaram, assim, um potencial ativador a montante, identificando a fosfatase calcineurina sensível ao Ca++. A inibição da calcineurina reduz a pSer-129 na mesma proporção que a inibição da Plk2, sem efeitos aditivos, sugerindo que atuam na mesma via. É importante ressaltar que a calcineurina tem um papel importante na liberação de neurotransmissores e a α-sinucleína é altamente pré-sináptica.

Para determinar onde ocorre a fosforilação da Ser-129 na célula, os autores fracionam os neurônios após a indução da atividade neural e descobrem que a maioria (mas não todas) da α-sinucleína modificada se associa às membranas. A imunocoloração confirma a expressão de pSer-129 nos botões pré-sinápticos. No entanto, talvez o resultado mais notável seja o aumento da fosforilação in vitro com Plk2 na presença de lipossomas. A α-sinucleína é uma proteína de membrana periférica que provavelmente se associa a vesículas sinápticas e a associação de membrana com membranas artificiais in vitro requer o N-terminal altamente conservado, com sete repetições de 11 aminoácidos que formam uma α-hélice na ligação à membrana14. pSer-129 ocorre no terminal C menos altamente conservado, e o aumento na fosforilação de Ser-129 na associação de membrana pode ocorrer por deslocamento do terminal C de uma interação intramolecular com as repetições de ligação à membrana N-terminal. A associação de membrana pode influenciar de forma semelhante a ligação do terminal C da α-sinucleína ao v-SNARE VAMP21. Uma vez que a α-sinucleína se liga com baixa afinidade às membranas pré-sinápticas e liga e desliga dinamicamente com exocitose e reciclagem15, a associação de membrana, bem como a ativação de Plk pela calcineurina, pode regular a fosforilação de Ser-129. No entanto, a fosforilação em Ser-129 não parece influenciar a interação da α-sinucleína com as membranas, de modo que a associação de membrana parece promover a fosforilação em Ser-129, e não vice-versa. Isso presumivelmente explica o aumento da localização pré-sináptica da sinucleína fosforilada em Ser-129 que os autores também demonstraram.

Finalmente, Ramalingam et al. (2023) abordam o papel funcional da fosforilação de Ser-1293, uma tarefa difícil devido ao papel pouco claro da α-sinucleína na neurotransmissão estudada em camundongos KO1,2. Apresentando WT e α-sinucleína mutante que não pode sofrer fosforilação em Ser-129 em neurônios KO de α-sinucleína, eles descobrem que, em relação a WT, o mutante reduz a amplitude das correntes pós-sinápticas excitatórias (EPSCs) e aumenta a amplitude das correntes pós-sinápticas inibitórias ( IPSCs), sem alteração em sua frequência. Isso é surpreendente porque, como uma proteína pré-sináptica, seria esperado que a α-sinucleína influenciasse a frequência de eventos. Uma mudança na amplitude é geralmente considerada como refletindo uma mudança nos receptores pós-sinápticos, onde há relativamente pouca sinucleína. Alternativamente, uma mudança na amplitude pode refletir o preenchimento alterado da vesícula sináptica com neurotransmissor e a sinucleína pode afetar o vazamento das vesículas sinápticas, mas a ausência completa de sinucleína não demonstrou afetar nenhuma dessas propriedades. Os autores também examinaram a liberação evocada em fatias do hipocampo e encontraram um efeito modesto na razão de pulsos pareados e um efeito maior na depressão sináptica, parâmetros mais claramente associados à função pré-sináptica, mas novamente sem grandes alterações em camundongos KO sinucleína16.

Em resumo, os autores fornecem evidências claras para a regulação fisiológica da fosforilação da α-sinucleína em Ser-129 pela atividade neural, indicando um papel além da patologia de Lewy. Além de Ca++ agir através da calcineurina e Plk2, a associação de membrana parece regular pSer-129, mas pSer-129 aparentemente não influencia a associação de membrana. A modificação também parece afetar a neurotransmissão, embora o mecanismo permaneça obscuro. Talvez o mais interessante, os resultados sugerem um importante papel regulador para o terminal C da α-sinucleína menos conservado. As mutações pontuais que causam a DP ocorrem dentro de uma pequena região nas repetições de ligação à membrana N-terminal, mas a regulação no C-terminal pode controlar a função da sinucleína na degeneração, bem como a fisiologia. Original em inglês, tradução Google, revisão Hugo (assunto muito difícil sobre a alfa-sinucleína). Fonte: Nature.