Mostrando postagens com marcador movimento. Mostrar todas as postagens
Mostrando postagens com marcador movimento. Mostrar todas as postagens

terça-feira, 27 de fevereiro de 2024

Ação da dopamina sobre o movimento ajuda a compreender Parkinson

Ilustração destacando o papel da dopamina no cérebro, com foco no movimento e na doença de Parkinson. [Imagem: Marcelo D. Mendonça et al. - 10.1016/j.cub.2024.01.067]

27/02/2024 - Dopamina e movimento

A dopamina, um mensageiro químico atuante no cérebro, é sobretudo conhecida pelo seu papel no modo como sentimos prazer e recompensa. No entanto, uma nova pesquisa da Fundação Champalimaud (Portugal) está chamando a atenção para o envolvimento crítico da dopamina no movimento, com implicações para a compreensão das funções motoras e do tratamento dos sintomas da doença de Parkinson.

Pense no ato de caminhar: É algo que a maioria das pessoas fisicamente aptas faz sem pensar. No entanto, trata-se na verdade de um processo complexo que envolve vários sistemas neurológicos e fisiológicos. A doença de Parkinson, por exemplo, é uma doença em que o cérebro perde lentamente células específicas, chamadas neurônios dopaminérgicos, o que resulta numa diminuição da força e da velocidade dos movimentos.

No entanto, há outro aspecto importante que também é afetado: A duração das ações. Uma pessoa com Parkinson pode não só mover-se mais lentamente, como também dar menos passos consecutivos antes de se imobilizar, no chamado travamento da marcha. O novo estudo mostra que os sinais dopaminérgicos afetam diretamente a duração das sequências de movimentos, o que nos aproxima um pouco mais da descoberta de novos alvos terapêuticos para melhorar a função motora na doença de Parkinson.

"A dopamina está intimamente associada à recompensa e ao prazer, sendo muitas vezes referida como o neurotransmissor do bem-estar," salienta o pesquisador Marcelo Mendonça. "Mas, para os indivíduos com Parkinson, que têm uma deficiência de dopamina, são normalmente as perturbações do movimento que mais afetam a sua qualidade de vida. Um aspecto que sempre nos interessou foi o conceito de lateralização. Na doença de Parkinson, os sintomas manifestam-se de forma assimétrica, começando frequentemente num lado do corpo antes de se declarar no outro. Com este estudo, quisemos explorar a teoria de que as células dopaminérgicas não se limitam a motivar-nos para o movimento, mas que também reforçam, especificamente, os movimentos do lado oposto do nosso corpo".

Ação da dopamina sobre o movimento ajuda a compreender Parkinson

É recente a descoberta de que o neurotransmissor dopamina controla o movimento. [Imagem: Maite Azcorra/Zachary Gaertner/Northwestern University]

Lateralidade

Foram duas descobertas marcantes, ambas mediadas pela dopamina: A primeira é que na verdade há dois tipos de neurônios dopaminérgicos misturados na mesma zona do cérebro.

E a ação de cada um deles é diferente: "Alguns neurônios ficavam ativos quando o camundongo estava prestes a mover-se, enquanto outros se iluminavam quando o camundongo recebia uma recompensa. Mas o que realmente nos chamou a atenção foi a forma como estes neurônios reagiam consoante a pata que o animal usava," contou Marcelo.

Em experimentos em animais, a equipe demonstrou que neurônios ativados pelo movimento se iluminavam mais quando os camundongos usavam a pata oposta ao lado do cérebro que estava sendo observado. Por exemplo, se o lado direito do cérebro estivesse sendo observado, os neurônios desse lado ficavam mais ativos quando o animal usava a pata esquerda, e vice-versa. Numa observação mais aprofundada, os cientistas descobriram então que a atividade desses neurônios relacionados com o movimento não só assinalava o início de um movimento, como também parecia codificar, ou representar, a duração das sequências de movimento - o animal tinha que pressionar uma alavanca para receber uma recompensa.

"Quanto mais o camundongo estivesse disposto a pressionar a alavanca com a pata oposta ao lado do cérebro que estávamos observando, mais ativos se tornavam os neurônios. Por exemplo, os neurônios do lado direito do cérebro ficavam mais excitados quando o camundongo usava a pata esquerda para pressionar a alavanca com mais frequência. Mas, quando o camundongo pressionava mais a alavanca com a pata direita, estes neurônios não apresentavam o mesmo incremento de excitação. Em outras palavras, estes neurônios não 'ligavam' apenas ao fato de o camundongo se mover ou não, mas também à quantidade de movimento e ao lado do corpo que se movia," explicou o pesquisador.

Ação da dopamina sobre o movimento ajuda a compreender Parkinson

Alguns cientistas já defendem que Parkinson não é uma doença única, mas duas doenças com sintomas diferentes. [Imagem: Gerd Altmann/Pixabay]

Perda de movimento

Para estudar a forma como a perda de dopamina afeta o movimento, os pesquisadores utilizaram uma neurotoxina que reduz seletivamente as células produtoras de dopamina em um dos lados do cérebro. Este método simula doenças como o Parkinson, em que os níveis de dopamina diminuem e o movimento se torna difícil.

A conclusão é que a redução da dopamina altera a forma como os camundongos pressionavam a alavanca com cada pata: A redução de dopamina em um dos lados levava a menos pressões de alavanca com a pata do lado oposto, enquanto a pata do mesmo lado não era afetada. Este resultado corrobora a influência lateralizada da dopamina sobre o movimento.

A expectativa da equipe é que suas descobertas sirvam de suporte para as pesquisas envolvendo os problemas de movimento na doença de Parkinson.

"Os diferentes sintomas observados nos doentes com doença de Parkinson poderão talvez estar relacionados com quais os neurônios dopaminérgicos que foram perdidos - por exemplo, os mais ligados ao movimento ou à recompensa. Isto poderia, potencialmente, permitir reforçar as estratégias de gestão da doença mais adaptadas ao tipo de neurônios dopaminérgicos perdidos, em especial porque sabemos agora que existem diferentes tipos de neurônios dopaminérgicos geneticamente definidos no cérebro," disse o professor Rui Costa. Fonte: Diário da Saúde.

quinta-feira, 3 de agosto de 2023

Pausar o movimento dos ratos pode esclarecer os sintomas motores

A ativação de células cerebrais específicas resulta na parada total do movimento dos animais

Um grupo de ratos amontoados, comendo pastilhas vermelhas.

August 2, 2023 - A ativação de um grupo específico de células nervosas no cérebro leva a uma parada repentina e total do movimento em camundongos, mostra um estudo.

Como o congelamento e o movimento lento são sintomas motores comuns da doença de Parkinson, os cientistas acreditam que essas células nervosas podem desempenhar um papel na doença.

“Parada motora ou movimento lento é um dos sintomas cardinais da doença de Parkinson. Especulamos que essas células nervosas especiais … são superativadas na doença de Parkinson. Isso inibiria o movimento ”, disse Ole Kiehn, MD, professor da Universidade de Copenhague, Dinamarca e coautor do estudo, em um comunicado à imprensa.

Embora o estudo, “Pedunculopontine Chx10+neurons control global motor stop in ratinhos”, tenha sido focado na compreensão da função dessas células em condições não relacionadas à doença, as descobertas “podem eventualmente ajudar … a entender a causa de alguns dos sintomas motores na doença de Parkinson”, disse Kiehn. Foi publicado na Nature Neuroscience.

A capacidade do cérebro de coordenar o movimento é um processo complicado. Para executar um movimento bem coordenado, o cérebro deve ser capaz de controlar quando o movimento começa, quanto tempo dura e quando para, tudo com níveis extremos de precisão. Os mecanismos precisos que controlam o movimento no cérebro permanecem pouco compreendidos.

Aqui, os pesquisadores identificaram um grupo específico de neurônios (células nervosas) em uma parte do núcleo pedunculopontino (PPN) do cérebro, que ajuda a coordenar o movimento. Esses neurônios expressam um marcador de proteína chamado Chx10 e produzem o mensageiro químico glutamato.

‘Como colocar um filme em pausa’

Eles usaram uma técnica chamada optogenética, em que os neurônios são projetados para serem ativados em resposta a um tipo específico de luz, para testar sua função. Quando os neurônios positivos para Chx10 foram ativados, os camundongos congelaram, seus movimentos pararam e até pararam a respiração e diminuíram a frequência cardíaca.

“Existem várias maneiras de parar o movimento. O que há de tão especial nessas células nervosas é que, uma vez ativadas, elas fazem com que o movimento seja pausado ou congelado”, disse Kiehn, que descreveu a mudança como “como colocar um filme em pausa. O movimento dos atores pára de repente no local.”

Quando os neurônios pararam de ser ativados, os camundongos retomaram seus movimentos – como apertar “play” em um vídeo pausado.

“Esse 'padrão de pausa e reprodução' é único; é diferente de tudo que já vimos antes. Não se assemelha a outras formas de movimento ou parada motora que nós ou outros pesquisadores estudamos. Lá, o movimento não começa necessariamente onde parou, mas pode recomeçar com um novo padrão”, disse Haizea Goñi-Erro, PhD, coautor do estudo que trabalhou na pesquisa como aluno de pós-graduação no laboratório de Kiehn.

O tipo de congelamento induzido pela ativação dos neurônios positivos de Chx10 era diferente da maneira como camundongos e outros animais congelam quando estão assustados.

“Temos certeza de que a parada do movimento observada aqui não está relacionada ao medo. Em vez disso, acreditamos que tem algo a ver com atenção ou estado de alerta”, disse Roberto Leiras, PhD, coautor do estudo e professor da Universidade de Copenhague.

Encontrar torna a estimulação cerebral profunda mais eficaz

Estudos anteriores em pessoas com doença de Parkinson usaram estimulação cerebral profunda (DBS) – uma intervenção cirúrgica que fornece estimulação elétrica a regiões específicas do cérebro – para atingir o PPN, a área do cérebro onde esses neurônios são encontrados. Direcionar o PPN dessa maneira ajudou a aliviar os sintomas motores em alguns casos, mas não em outros.

Essas novas descobertas podem ajudar a explicar essa discrepância, uma vez que os neurônios positivos para Chx10 são encontrados principalmente na parte do PPN que fica na frente do corpo. Eles especularam que o DBS do PPN poderia ser mais bem-sucedido se tivesse como alvo específico a parte de trás. Isso pode evitar ativar os neurônios que induzem o congelamento enquanto ativa outros neurônios no PPN que estimulam o movimento.

“É provável que uma abordagem bem-sucedida de estimulação cerebral profunda direcionada ao PPN para aliviar as disfunções locomotoras [de Parkinson] deva evitar a parte rostral [frontal] do núcleo para evitar o envolvimento da população Chx10+”, escreveram os pesquisadores, observando o As descobertas oferecem informações sobre como o cérebro controla o movimento. Entender melhor esses processos pode ajudar a entender os problemas motores do Parkinson, disseram eles. Original em inglês, tradução Google, revisão Hugo. Fonte: Parkinson´s News Today.