Os pesquisadores descobriram como é o PINK1 humano, oferecendo uma nova esperança na busca por um tratamento para Parkinson.
Um modelo branco de um cérebro humano em cima de uma molécula de proteína em várias cores, representando as proteínas de Parkinson.
14 de maio de 2025 - Descoberta pela primeira vez em 2001, a proteína PINK1 tem sido diretamente ligada à doença de Parkinson. No entanto, até agora, os cientistas não conseguiram visualizar o PINK1 humano ou entender como ele é ligado ou se liga à superfície das mitocôndrias danificadas como parte do controle de qualidade mitocondrial.
Pela primeira vez no mundo, pesquisadores do Instituto de Pesquisa Médica Walter e Eliza Hall (WEHI) determinaram a estrutura do PINK1 humano ligado às mitocôndrias. As descobertas, publicadas na revista Science, revelam novas maneiras de "ligar" o PINK1 e podem abrir caminho para novos medicamentos para tratar a doença de Parkinson.
Em indivíduos saudáveis, o PINK1 se reúne nas membranas mitocondriais e sinaliza quando as mitocôndrias quebradas precisam ser removidas (um processo conhecido como mitofagia). O sinal é exclusivo das mitocôndrias danificadas e quando o PINK1 sofre mutação, o processo de mitofagia não funciona mais corretamente e as toxinas se acumulam na célula, causando a morte celular.
As células cerebrais, que requerem muita energia produzida pelas mitocôndrias – também conhecidas como a força motriz da célula – são especialmente sensíveis a esse dano.
A Technology Networks conversou com a Dra. Sylvie Callegari, diretora sênior de pesquisa da WEHI, para saber mais sobre como os pesquisadores foram capazes de resolver esse mistério de décadas e o que isso poderia significar para futuros esforços de descoberta de medicamentos.
Blake Forman (BF):
Você pode nos explicar a descoberta revolucionária que sua equipe fez e como ela nos ajuda a entender a doença de Parkinson de uma nova maneira?
Sylvie Callegari, PhD (SC):
Por quase 20 anos, sabemos que mutações na proteína PINK1 causam a doença de Parkinson de início precoce. Nosso grande avanço é que, pela primeira vez, pudemos ver como é o PINK1 humano na superfície das mitocôndrias danificadas. Até agora, tivemos que usar versões de insetos do PINK1 para tentar entender como o PINK1 funciona, então nunca tivemos o quadro completo. Nossas novas imagens revelam o PINK1 humano sentado em uma composição de poros dispostos simetricamente na superfície das mitocôndrias. Esse arranjo é mais elaborado do que qualquer um esperava e até revela proteínas que funcionam em conjunto com o PINK1, que anteriormente não conhecíamos. Então, agora, com esse quadro mais completo, temos uma melhor compreensão de como o PINK1 funciona em humanos e podemos ver por que mutações em diferentes regiões do PINK1 causam a doença de Parkinson. Saber como diferentes mutações causam Parkinson também pode nos ajudar a adaptar terapias para pacientes com mutações PINK1 no futuro.
BF:
Como essas descobertas podem influenciar o desenvolvimento de futuros tratamentos de Parkinson?
SC:
Essas descobertas são um grande salto para os esforços de descoberta de medicamentos para Parkinson, especialmente para aqueles com doença de Parkinson de início precoce devido a mutações PINK1. Nossa imagem do PINK1 serve como um modelo para o desenvolvimento de medicamentos que aumentam sua atividade.
Sem a capacidade de ver o PINK1, estávamos efetivamente tentando consertar uma máquina quebrada com os olhos vendados. Nossa recente descoberta removeu essa venda e, agora que podemos ver o PINK1, será muito mais fácil corrigi-la.
BF:
Que desafios você encontrou durante esta pesquisa e como os superou para chegar a essa descoberta importante?
SC:
Para poder ver PINK1, precisávamos de "pedaços" da superfície mitocondrial que continham PINK1, e precisávamos de muitos deles. Encontrar uma maneira de obter PINK1 humano suficiente tem sido um problema há décadas. Para superar esse problema, usamos quantidades muito grandes de células (quase 10 litros de cultura de células) das quais extrairíamos mitocôndrias danificadas com PINK1, quebraríamos as mitocôndrias e coletaríamos todas as peças mitocondriais com PINK1 nelas. Para obter o suficiente, esse processo tinha que ser o mais eficiente possível. Tive a sorte de ter muita experiência anterior em isolar complexos da superfície das mitocôndrias do meu treinamento anterior em um laboratório mitocondrial na Alemanha, então já tinha uma vantagem inicial na criação de uma estratégia eficiente que nos permitiu obter PINK1 suficiente para que pudéssemos visualizar usando microscopia eletrônica criogênica.
Outro problema é que o complexo PINK1 que retiramos das células precisa ser estável (é difícil tirar uma foto de alta resolução de algo que se move ou se desfaz) e, portanto, precisávamos capturar o PINK1 no ponto certo onde ele é mais estável. A estratégia experimental foi fundamental, e tentei muitas condições experimentais diferentes para chegar ao nosso processo otimizado final que resultou no isolamento estável do PINK1 humano.
BF:
PINK1 tem sido notoriamente difícil de imaginar no passado. Que avanços em tecnologia ou abordagens inovadoras permitiram que sua equipe o capturasse com tantos detalhes?
SC:
A estrutura do PINK1 humano escapou de pesquisadores em todo o mundo por décadas. A criomicroscopia eletrônica tem sido revolucionária na resolução da estrutura de complexos proteicos, em particular complexos de membrana como este, mas o principal desafio, conforme descrito acima, foi obter PINK1 estável suficiente. Nos últimos anos, os avanços nos sistemas de expressão de proteínas de mamíferos, que podem ser cultivados em alta densidade e em lotes de litros, foram um divisor de águas para a produção de grandes quantidades de proteína em células de mamíferos. Usamos o sistema de expressão Expi293 disponível comercialmente (Thermo Fisher Scientific) e estabelecer esse sistema no laboratório foi minha primeira missão ao embarcar neste projeto. Ter uma maneira eficiente de cultivar muitas células que produzem o máximo possível de PINK1 foi o primeiro passo essencial em nosso protocolo de isolamento PINK1.
BF:
Quais são os próximos passos após essa descoberta? Como você imagina o futuro das terapias para a doença de Parkinson evoluindo?
SC:
Atualmente, existem medicamentos em pipeline clínico que aumentam a atividade do PINK1, mas sem nunca ver onde ou como esses medicamentos interagem com o PINK1, não temos uma compreensão completa de como eles funcionam. Planejamos usar nosso método de isolamento PINK1 para visualizar esses medicamentos em associação com o PINK1 para entender como eles funcionam. Além disso, também usaremos nosso modelo PINK1 para projetar novos medicamentos que aumentem a atividade do PINK1. Ao aumentar a atividade do PINK1, ajudamos a nos livrar das mitocôndrias tóxicas e danificadas na célula, que de outra forma matariam as células cerebrais. Em última análise, é isso que causa a doença de Parkinson, por isso precisamos manter nossas células cerebrais vivas e bem. Fonte: technologynetworks.