Mostrando postagens com marcador magnetogenética. Mostrar todas as postagens
Mostrando postagens com marcador magnetogenética. Mostrar todas as postagens

quarta-feira, 14 de abril de 2021

Abordagens de neuromodulação não invasivas podem prevenir a cirurgia invasiva em pacientes com Parkinson

Apr 13 2021 - De optogenética a sonogenética a magnetognética, cientistas de todo o mundo estão investigando novas técnicas para tratar a doença de Parkinson sem a necessidade de cirurgia invasiva.

Ainda não existe um tratamento que possa reverter os efeitos do Parkinson, condição que afeta cerca de 10 milhões de pessoas em todo o mundo. À medida que a expectativa de vida aumenta, o número de pessoas que sofrem desta doença tende a aumentar no futuro, tornando a necessidade de um tratamento eficaz uma prioridade.

Os médicos prescrevem medicação oral para aliviar os principais sintomas e, para alguns pacientes, usam estimulação cerebral profunda. Os eletrodos estimulam as áreas afetadas e aliviam as reações induzidas pela doença, como tremor ou rigidez.

No entanto, essa técnica apresenta desafios significativos porque os cirurgiões precisam fazer um orifício no crânio para implantar os eletrodos. Mas e se pudéssemos controlar os neurônios sem a necessidade desse procedimento invasivo e caro?

Esta é a pergunta que alguns cientistas se fizeram há algumas décadas, abrindo as portas para o que é conhecido como técnicas de neuromodulação não invasivas. Embora manipular neurônios sem tocá-los fosse considerado ficção científica, esse método ganhou muita popularidade, e vários grupos de pesquisadores em todo o mundo começaram a investigá-lo para uma ampla variedade de condições, incluindo a doença de Parkinson.

Em 2004, uma dessas técnicas, denominada optogenética, foi descrita pela primeira vez, revolucionando o campo da neurociência. Consiste em modificar geneticamente as células cerebrais para expressar proteínas sensíveis à luz, o que significa que a atividade do aneurônio pode ser controlada por meio de pulsos de luz. Até o ano passado, esse procedimento ainda era considerado invasivo, pois conseguir os pulsos de luz dentro do cérebro para controlar as células exigia implantes.

No entanto, isso mudou em outubro passado, quando um grupo de pesquisadores da Universidade de Stanford relatou ter desenvolvido com sucesso uma versão sem implante da técnica, tornando possível a optogenética cerebral profunda sem cirurgia em camundongos.

Seguindo os princípios da optogenética, uma nova técnica denominada sonogenética foi proposta em 2015.

Descobrimos um novo conjunto de proteínas, que normalmente não são expressas nas células que estamos tentando controlar. E o que é especial sobre essas proteínas é que são sensíveis ao ultrassom. Ao entregar essas proteínas às células afetadas, elas se tornam responsivas ao ultrassom”, diz ele. “Você não precisa de nenhuma cirurgia, você coloca seu transdutor no crânio e entrega o ultrassom para controlar as células”.

Sreekanth Chalasani, professor associado, Salk Institute for Biological Studies, EUA

Chalasani descreveu pela primeira vez a sonogenética. Além da dispensa da cirurgia, uma das principais vantagens dessa técnica é a segurança, como aponta Chalasani. "O ultrassom são ondas sonoras com frequências mais altas do que os humanos podem ouvir.

É seguro, não invasivo e temos muita experiência com ele. Por décadas, usamos o ultrassom para fazer imagens de bebês e para aliviar a dor”, explica. Além disso, o ultrassom atravessa a pele e os ossos. Por isso, “o transdutor que produz o ultrassom pode estar fora do corpo e ainda estruturas-alvo que estão nas profundezas do cérebro, necessárias para aliviar os sintomas da doença de Parkinson", acrescenta Chalasani.

Embora muito tenha sido realizado desde 2015, algumas questões permanecem sem solução. Por um lado, os cientistas precisam encontrar uma maneira confiável de introduzir proteínas sensíveis à luz e ao ultrassom no corpo humano. "No momento, não temos uma maneira de entregar genes a alvos específicos no cérebro humano", diz Chalasani.

"Precisamos de uma maneira de expressar uma proteína apenas nas células desejadas, e não em qualquer outro lugar." Por outro lado, a tecnologia do transdutor também precisa ser mais desenvolvida. “Queremos algo que seja minúsculo, mas que produza energia suficiente para passar pelo crânio sem aquecer o cérebro”, explica Chalasani. “Estamos desenvolvendo uma nova classe de transdutor que não causa aquecimento e, ao mesmo tempo, produz energia suficiente para controlar as células”.

Além de usar luz e ultrassom, os cientistas também descobriram que poderiam usar ímãs para controlar o comportamento das células. Eles chamaram essa abordagem de magnetogenética. O projeto aberto FET da UE Magneuron, que começou em 2016, buscou usar a técnica para fazer a terapia de reposição celular avançar um passo adiante.

O princípio é simples: substituir neurônios danificados no cérebro por novos neurônios saudáveis ​​criados em laboratório. Mas a terapia enfrenta um desafio significativo, dada a complexidade do cérebro humano.

“Na regeneração cerebral, temos um problema no que diz respeito ao sistema nervoso central. Você coloca os neurônios no cérebro e eles não sabem para onde ir após o transplante. Além disso, a conectividade entre os neurônios não é restaurada”, explica Rolf. Heumann, chefe do grupo de neuroquímica molecular da Universidade Ruhr Bochum, na Alemanha, e um dos participantes do projeto Magneuron.

Para superar esse desafio, o consórcio interdisciplinar teve a ideia de pré-carregar neurônios em laboratório com nanopartículas magnéticas para que, uma vez implantadas no cérebro, os cientistas pudessem controlar a direção em que os neurônios crescem por meio de ímãs.

Uma das principais diferenças em relação às duas técnicas explicadas anteriormente é que, neste caso, os neurônios dos pacientes não precisam ser geneticamente modificados. "Com os métodos que usamos, tentamos evitar a manipulação genética", explica Heumann. “Usamos nanopartículas que possuem proteínas responsáveis ​​por direcionar o crescimento do neurônio ligado a elas. Essas proteínas são feitas em bactérias, purificadas e anexadas às nanopartículas. Portanto, não é um método genético primário no paciente”, ressalta Heumann.

Os pesquisadores alcançaram vários marcos. "Descrevemos como lidar com as nanopartículas puras e ligar as proteínas a elas. Além disso, descobrimos uma maneira de colocar as nanopartículas em células vivas e manipulá-las uma vez dentro", explica Fabian Raudzus, professor assistente da Universidade de Kyoto, no Japão, que também trabalhou no projeto.

Uma das conquistas mais significativas foi encontrar uma maneira de carregar as nanopartículas em muitas células ao mesmo tempo. “A ideia é que apliquemos um pouco de pressão nas células para que possamos inserir nelas uma quantidade maior de nanopartículas”, diz o médico Sebastian Neumann, da Universidade Ruhr Bochum, na Alemanha, e outro participante do projeto Magneuron. “E essa seria uma abordagem importante para o futuro no que diz respeito ao tratamento dos pacientes”.

Embora o projeto tenha terminado em 2019, alguns dos membros continuam trabalhando neste campo, focando principalmente em encontrar um gradiente magnético estável para controlar as nanopartículas, avaliar os efeitos das nanopartículas a longo prazo e passar de estudos in vitro em células aos organoides.

Os cientistas ainda estão longe de testar a optogenética, sonogenética e magnetogenética nas clínicas, mas as abordagens de neuromodulação estão alimentando grandes esperanças: elas prometem não apenas evitar a cirurgia invasiva, mas também reativar os neurônios danificados e reverter os efeitos de muitos distúrbios neurodegenerativos. Original em inglês, tradução Google, revisão Hugo. Fonte: News-medical.