Mostrando postagens com marcador CRISPR. Mostrar todas as postagens
Mostrando postagens com marcador CRISPR. Mostrar todas as postagens

sexta-feira, 19 de janeiro de 2024

Recodificando o cérebro: o CRISPR é capaz de curar doenças neurodegenerativas?

January 19, 2024 - Quando CASGEVY, a primeira terapia baseada em CRISPR, foi aprovada pela FDA em dezembro, deu à tecnologia CRISPR a validação necessária. Qualquer promessa que tivesse realizado antes daquele momento era simplesmente investigativa. Neste caso, foi concedida a aprovação do CASGEVY para o tratamento de duas doenças sanguíneas – doença falciforme (DF) e beta-talassemia. Mas e se o CRISPR também pudesse tornar-se uma ferramenta vital no tratamento de doenças neurodegenerativas?

As doenças neurodegenerativas são tremendamente difíceis de tratar. Como apontou Cem Zorlular, diretor executivo (CEO) da Er-Kim Pharmaceuticals, o cérebro tem “bilhões de neurônios e trilhões de conexões”. Em última análise, tem uma estrutura extremamente complexa que os cientistas ainda não compreenderam completamente.

Zorlular continuou: “Essa complexidade torna difícil atingir regiões específicas do cérebro com tratamentos. Além disso, as doenças neurodegenerativas têm frequentemente um longo período latente, o que significa que os sintomas podem não se manifestar durante muitos anos após o início da doença. “Esta situação complica o desenvolvimento de tratamentos que possam retardar ou prevenir a progressão da doença.”

Apesar disso, uma técnica de edição genética como o CRISPR pode ser uma abordagem promissora. “É particularmente relevante para doenças neurodegenerativas como Alzheimer e Parkinson, caracterizadas pela perda contínua de neurônios e redes nervosas, levando a distúrbios de movimento, problemas cognitivos e dificuldades de fala e respiração”, explicou Zorlular. “O Alzheimer, por exemplo, está ligado a mutações em genes específicos como APP, PSEN1 e PSEN2. “O CRISPR pode editar estes genes, potencialmente abordando as causas subjacentes destas doenças.”

Neste momento, a investigação sobre a utilização do CRISPR para doenças neurodegenerativas ainda está numa fase inicial. Neste artigo, exploramos vários estudos que avaliam como o CRISPR poderia ser usado para tratar as duas doenças neurodegenerativas mais comuns, a doença de Alzheimer e a doença de Parkinson, bem como a doença hereditária rara conhecida como doença de Huntington.

Duas abordagens baseadas em CRISPR para a doença de Alzheimer reveladas na Conferência Internacional da Associação de Alzheimer

Na Conferência Internacional da Associação de Alzheimer (AAIC) em Amsterdã no ano passado, os pesquisadores revelaram dois métodos de utilização do CRISPR para a doença de Alzheimer, ambos analisando maneiras pelas quais os genes podem aumentar o risco de desenvolver a doença de Alzheimer e como a edição desses genes poderia reduzir o risco de desenvolver a doença ou proteger o cérebro do acúmulo de amiloide, que se acredita ser a causa única da doença.

O primeiro estudo veio de pesquisadores da Universidade de San Diego. Eles desenvolveram uma estratégia de edição genética usando CRISPR que tem como alvo a proteína precursora de amiloide (APP) – uma proteína responsável pela superprodução de beta-amilóide no cérebro, o que eventualmente leva ao acúmulo de placas que são uma marca registrada do Alzheimer. O gene APP produz diversos produtos, alguns dos quais são protetores, enquanto outros estão associados a patologias, como o beta-amilóide. Na sua abordagem, os cientistas pretendiam diminuir a produção de beta-amilóide e, ao mesmo tempo, aumentar as ações neuroprotetoras.

Os pesquisadores realizaram experimentos em ratos com doença de Alzheimer para testar sua estratégia. Aqui, eles descobriram que o tratamento CRISPR resultou numa redução nas placas beta-amilóides e numa diminuição nos marcadores de inflamação cerebral. Eles também observaram um aumento nos produtos de APP neuroprotetores, bem como melhorias na função comportamental e do sistema nervoso. Além disso, a edição genética não causou efeitos colaterais indesejáveis ​​em ratos saudáveis.

Enquanto isso, no segundo estudo, os pesquisadores da Duke University desenvolveram outra abordagem CRISPR, desta vez visando um fator de risco genético para a doença neurodegenerativa chamada APOE-e4. Herdar este gene aumenta a probabilidade de alguém desenvolver a doença de Alzheimer. Embora a presença do gene não seja uma garantia de que uma pessoa contrairá a doença, as pessoas que têm uma cópia têm um risco duas a três vezes maior de contraí-la, enquanto duas cópias aumentam o risco de oito a doze vezes.

Neste estudo, os pesquisadores usaram uma plataforma de terapia de epigenoma baseada na estratégia de edição CRISPR/dCas9 para reduzir os níveis de APOE-e4. Descobriu-se que o principal candidato desta plataforma reduz os níveis de APOE-e4 em cérebros em miniatura derivados de células-tronco pluripotentes induzidas por humanos de um paciente com Alzheimer, bem como em modelos de camundongos humanizados. Além disso, a abordagem não afetou os níveis de outras variantes da APOE que se acredita terem um efeito neutro ou protetor.

É claro que esses estudos ainda estão em seus estágios iniciais. Mas com os tratamentos recentemente aprovados para a doença de Alzheimer que causam efeitos secundários potencialmente graves, é necessário encontrar abordagens mais inovadoras para tratar a doença neurodegenerativa, como as apresentadas nestes artigos CRISPR.

É claro que esses estudos ainda estão em seus estágios iniciais. Mas com os tratamentos recentemente aprovados para a doença de Alzheimer que causam efeitos secundários potencialmente graves, é vital encontrar abordagens mais inovadoras para tratar a doença neurodegenerativa, como as destes estudos CRISPR.

CRISPR para doença de Parkinson

O Parkinson afeta um tipo de neurônio chamado neurônios dopaminérgicos, que são encontrados na região da substância negra do mesencéfalo e são essenciais para movimentos voluntários e processos comportamentais. A grande maioria dos casos de Parkinson ocorre esporadicamente; apenas 10% são herdados geneticamente.

Acredita-se que agregados de proteína ɑ-sinucleína mal dobrada, também conhecidos como corpos de Lewy, estejam envolvidos na fisiopatologia subjacente do Parkinson, e a ɑ-sinucleína é abundante em neurônios dopaminérgicos. A expressão da α-sinucleína também está intimamente ligada ao gene SNCA, que é um dos locais preditivos mais importantes para DP esporádica. A mutação chamada Ala53Thr (A53T) na SNCA é reconhecida como um dos fatores de risco mais proeminentes para DP de início precoce.

Nesse sentido, foi realizado um estudo em 2022, que mostrou que o uso do sistema CRISPR-Cas9 para deletar o gene A53T-SNCA melhorou significativamente as condições relacionadas à doença de Parkinson, como a superprodução de α-sinucleína, microgliose reativa, neurodegeneração dopaminérgica, e sintomas motores associados ao Parkinson.

Na maior parte, porém, as variantes genéticas ligadas à maioria dos casos esporádicos de Parkinson não são claras e os mecanismos moleculares da progressão do Parkinson ainda não foram completamente compreendidos. O desafio de estudar os mecanismos subjacentes do Parkinson é a complexidade das múltiplas mutações genéticas que podem estar envolvidas. Mas esta é também uma área onde o CRISPR pode ser bem utilizado. Pode ajudar a rastrear variantes genéticas no Parkinson para determinar sua causa e pode ser efetivamente usado para desenvolver modelos de pesquisa celular e de organismos inteiros para estudar o fenótipo do Parkinson.

Por exemplo, um estudo conduzido na Universidade de Pittsburgh aproveitou o potencial de edição do genoma da Synthego (que fornece células projetadas e kits CRISPR) para gerar modelos de células nocautes de NADPH oxidase (NOX1, NOX2 e NOX4) para Parkinson. O estudo demonstrou o papel da enzima Nox2 na degeneração relacionada ao estresse oxidativo, incluindo acúmulo de ɑ-sinucleína, comprometimento da importação de proteínas nas mitocôndrias e ativação da quinase 2 de repetição rica em leucina (LRRK2).

Em última análise, neste momento, a maior parte do potencial do CRISPR para a doença de Parkinson reside no rastreio genético, mas isto pode mudar assim que os cientistas começarem a compreender melhor os mecanismos subjacentes à doença neurodegenerativa.

Doença de Huntington: um candidato promissor para terapia genética

Como a doença de Huntington é uma doença neurodegenerativa hereditária causada por uma única mutação e pela presença de uma proteína anormal, torna-a a candidata perfeita para a edição do gene CRISPR. A doença de Huntington é causada por expansões de trinucleotídeos (CAG) no gene Huntingtin (HTT), resultando em longos trechos do aminoácido glutamina na proteína Huntingtina. A hiperexpansão das repetições CAG (40 ou mais) leva ao aparecimento dos sintomas de Huntington.

Um dos estudos CRISPR mais promissores e recentes – realizado no ano passado – para a doença de Huntington, veio de investigadores da Universidade de Jinan. Eles conseguiram demonstrar que a edição CRISPR-Cas9 pode ser usada para corrigir a mutação no HTT, substituindo a hiperexpansão por uma repetição CAG normal. A terapia genética foi empacotada em um vetor AAV e entregue aos porcos por injeção intracraniana ou intravenosa. Um único tratamento resultou na depleção da proteína Huntingtina mutante e na redução da neurotoxicidade e dos sintomas relacionados. Esta pesquisa pré-clínica é muito promissora e poderá progredir para ensaios clínicos.

Outro estudo recente de prova de conceito, que utilizou edição de RNA baseada em CRISPR, de pesquisadores da Johns Hopkins e da UC San Diego, demonstrou uma depleção significativa de transcritos mutantes em três linhas diferentes de células-tronco pluripotentes induzidas (iPSC) derivadas de pacientes com doença de Huntington. , cada um carregando um número diferente de repetições. Experiências in vivo subsequentes num modelo de ratinho com doença de Huntington demonstraram que os ratos tratados melhoraram significativamente a função motora – um efeito que continuou durante até oito meses nos ratos, sugerindo benefícios terapêuticos duradouros.

A razão pela qual os cientistas usaram uma abordagem de edição de RNA baseada em CRISPR neste estudo específico é porque se descobriu que os transcritos de RNA mensageiro mutante (mRNA) produzidos na doença de Huntington contribuem significativamente para a patogênese da doença, o que os torna um bom alvo para o tratamento.

Obstáculos a superar

Como mencionado anteriormente, as doenças neurodegenerativas são complicadas de tratar e, embora o CRISPR se mostre promissor para algumas destas doenças, ainda há um longo caminho a percorrer.

“Os cientistas ainda não compreendem totalmente os mecanismos por trás da maioria das doenças neurodegenerativas”, comentou Buse Baran, analista de operações comerciais e especialista em terapia genética da Er-Kim Pharmaceuticals. “Esta falta de compreensão torna difícil o desenvolvimento de tratamentos direcionados que abordem as causas profundas das doenças. Além disso, as doenças neurodegenerativas normalmente afetam uma ampla gama de células do cérebro, tornando difícil direcionar tratamentos exclusivamente para as células afetadas.”

Ela também acrescentou que a administração de tratamentos ao cérebro é outro desafio significativo porque a barreira hematoencefálica dificulta a passagem da maioria das substâncias para o cérebro, dificultando a administração eficaz dos tratamentos.

CRISPR também ainda é uma tecnologia relativamente nova; aquele que acaba de chegar do seu potencial ao mundo. Baran disse que, embora tenha um grande potencial, ainda requer maior desenvolvimento, e permanecem desafios em torno do risco de efeitos fora do alvo, preocupações éticas, segurança desconhecida a longo prazo e obstáculos de entrega.

No entanto, Baran também observou que a aprovação do CASGEVY e o sucesso demonstrado de um tratamento baseado em CRISPR em ensaios clínicos – em termos de eficácia e segurança – fornecerão uma base positiva para outras potenciais terapias baseadas em CRISPR. “CRISPR é uma tecnologia versátil que se está a tornar cada vez mais eficiente e precisa, capaz de ser utilizada no tratamento de uma vasta gama de doenças…À medida que os dados de eficácia e segurança da tecnologia CRISPR continuam a melhorar, a probabilidade de obtenção de aprovações também aumentará. ”

Assim, à medida que estudos mais bem-sucedidos continuam a ser realizados testando o CRISPR no tratamento de doenças neurodegenerativas, é muito possível que vejamos uma série de tratamentos baseados em CRISPR entrando na clínica para doenças como Alzheimer, Parkinson e Huntington, no próximo futuro. Original em inglês, tradução Google, revisão Hugo. Fonte: Labiotech.

domingo, 12 de dezembro de 2021

Microbioma intestinal geneticamente editado em camundongos vivos pela primeira vez

Dec 12, 2021 - Cientistas da Universidade da Califórnia em San Francisco (UCSF) editaram com sucesso o genoma da bactéria no microbioma intestinal de camundongos vivos, pela primeira vez. Os vírus caçadores de bactérias são carregados com o sistema de edição de genes CRISPR, em um avanço que pode ajudar a manipular a proporção entre as diferentes espécies de bactérias para tratar uma série de problemas de saúde.

Cada um de nós carrega uma imensa comunidade de microorganismos em nosso intestino. Esse microbioma intestinal está intimamente ligado à sua saúde, e não apenas à saúde digestiva, como seria de se esperar. Uma pesquisa recente descobriu que o microbioma intestinal pode desempenhar um papel em doenças autoimunes, diabetes, câncer, doenças cardiovasculares, Parkinson, Alzheimer, esclerose múltipla e até depressão.

O equilíbrio desse delicado ecossistema pode ser perturbado por nossa dieta, antibióticos e muitos outros fatores, e pode ser difícil de corrigir. Probióticos e transplantes fecais podem ajudar, mas nem sempre tomam e podem não ter o efeito desejado.

Para o novo estudo, os pesquisadores da UCSF investigaram como a edição de genes das bactérias intestinais poderia ajudar a restaurar o equilíbrio da composição do microbioma. Uma distinção importante seria projetar tratamentos que visem cepas específicas de bactérias, sem afetar outras que possam ser benéficas.

“Demonstramos a primeira edição de gene estável no microbioma intestinal de um mamífero”, diz Peter Turnbaugh, autor correspondente do estudo. “Este é o ponto de partida para tentar criar bactérias dentro do intestino.”

A E. coli é um dos habitantes mais comuns de nossas entranhas, com cepas que são boas para nós e outras que podem causar doenças como intoxicação alimentar. Em testes em ratos, a equipe desenvolveu um bacteriófago chamado M13 - um vírus que caça especificamente E. coli - para se concentrar seletivamente em uma cepa. Quando o vírus se agarra, ele entrega o CRISPR-Cas9 à bactéria alvo, excluindo os cromossomos.

A equipe administrou M13 a camundongos por via oral e monitorou as alterações do microbioma analisando as fezes dos animais. Antes do início do tratamento, a cepa alvo dominava seus intestinos, mas representava apenas 1% da população após duas semanas.

Os pesquisadores afirmam que a técnica pode eventualmente ser usada para alterar a composição do microbioma para ajudar a corrigir desequilíbrios que podem causar problemas de saúde. Mas, claro, esse é um objetivo elevado que ainda está muito distante, considerando a complexidade do microbioma. Ainda há muito trabalho a ser feito, incluindo encontrar outros bacteriófagos que podem atingir diferentes bactérias.

“O sonho é que você poderia simplesmente escolher quais cepas específicas em seu intestino - ou mesmo apenas genes individuais - você deseja promover ou eliminar”, diz Turnbaugh. “Estamos muito entusiasmados com o quão longe fomos capazes de empurrar isso em E. coli. Esperançosamente, isso levará a ferramentas semelhantes para outros membros da microbiota intestinal.”

A pesquisa foi publicada na revista Cell Reports. Original em inglês, tradução Google, revisão Hugo. Fonte: UCSF, com links.

quarta-feira, 6 de janeiro de 2021

“Esperamos abrir uma porta para novos tratamentos na doença de Parkinson”

Investigador Noam Shemesh, vencedor do Prémio Mantero Belard

Em entrevista à VISÃO, o investigador Noam Shemesh, vencedor do Prémio Mantero Belard, explica em que consiste a sua nova abordagem para detetar mais precocemente a doença de Parkinson e permitir, assim, testar “uma terapia de edição de genes” para tentar travar a doença nas fases iniciais

05.01.2021 -Noam Shemesh lidera a equipa galardoada com o Prémio Mantero Belard, atribuído pela Santa Casa da Misericórdia de Lisboa. É um dos vencedores deste ano dos Prémios Santa Casa Neurociências e a sua investigação traz aos doentes de Parkinson uma nova esperança de, no futuro, virem a ter novos tratamentos e uma melhor qualidade de vida. À VISÃO, o investigador explicou como pretende desenvolver uma metodologia de deteção precoce da doença e compreender melhor os mecanismos que levam à deterioração da função cerebral nesses doentes. Por isso, a equipa quer compreender as relações básicas entre genes específicos e a Doença de Parkinson.

Esta “inovadora” abordagem também pode “permitir testar adicionalmente uma nova terapia de edição de genes para ver se a doença pode ser travada nas suas fases iniciais”. Além de ter impacto significativo na investigação feita noutras doenças neurodegenerativas.

Noam Shemesh acredita que esta abordagem se traduz num avanço científico, uma vez que “as doenças neurodegenerativas são descobertas demasiado tarde e as opções de tratamento são muito limitadas”. A agravar, lamenta, “não existem tratamentos capazes de impedir o aparecimento, travar a progressão ou alterar o decurso da doença”, gerando “grande sofrimento nos doentes e nos seus familiares”. Por isso, a equipa de Noam Shemesh vai tentar trazer uma nova luz com a investigação que está a desenvolver na Fundação D. Anna de Sommer Champalimaud e Dr. Carlos Montez Champalimaud.

Qual é o objetivo do projeto que coordena e que foi distinguido com o Prémio Mantero Belard 2020?

Queremos colmatar uma lacuna ao nível da percepção de como as mudanças moleculares na doença de Parkinson afetam a atividade neural do cérebro e conduzem aos seus terríveis resultados funcionais. Ou seja, queremos compreender como é que as mudanças moleculares em células específicas criam desequilíbrios na atividade cerebral. E depois perceber como esses mesmos desequilíbrios se coordenam para se traduzirem numa patologia severa chamada doença de Parkinson.

Em que consiste o seu projeto “Da expressão genética à função das redes neuronais: estabelecendo a ponte na doença de Parkinson”?

Consiste em utilizar o auge da tecnologia – a ressonância magnética – juntamente com ferramentas genéticas, como a edição genética e a estimulação optogenética, para investigar as alterações que ocorrem no cérebro no decurso da doença de Parkinson. Vamos, assim, fazer uma caracterização microarquitetónica do cérebro, durante o curso temporal da doença, e uma caracterização específica da função dopaminérgica em todo o cérebro. Estamos, por isso, otimistas que esta abordagem terapêutica permitirá detetar estados muito precoces da doença. Isto permitir-nos-á adicionalmente testar uma nova e excelente terapia de edição de genes para depois ver se a doença pode ser travada nas suas fases iniciais.

Em que é que esta abordagem terapêutica se diferencia da que já existe?

A nossa abordagem é diferente, porque visa a ativação cerebral mesoscópica e a microarquitetura de tecidos como base da doença. E depois vamos-nos direcionar para aspetos específicos da atividade cerebral que se tornam anómalos. A utilização da ressonância magnética facilita muito esta abordagem.

Quais são as etapas deste projeto?

São três e bastante complexas. A primeira etapa consiste em recorrer aos scanners de ressonância magnética que temos, na Fundação Champalimaud, para estudar a microarquitetura e o funcionamento do cérebro no decurso da doença. O que, mais tarde, pode vir a permitir uma deteção precoce da doença. Numa segunda fase, vamos aproveitar as manipulações optogenéticas para desencadear atividade em estruturas dopaminérgicas específicas no cérebro e caraterizar como é que o sistema dopaminérgico se torna anómalo ao longo do tempo. Por último, vamos utilizar as novas técnicas de edição de genes para testar um potencial tratamento precoce para a doença.

Esta investigação terá aplicação clínica, no futuro?

Embora este projeto seja de natureza científica básica, acreditamos que a sua fruição poderia dar início a uma nova era para a aplicação clínica de algumas das nossas metodologias. Uma vez comprovada a eficácia das nossas ideias sobre como caraterizar a doença prematuramente, estas podem ser potencialmente traduzidas para a clínica e/ou gerar melhores metodologias de imagem para a deteção da doença de Parkinson. Os elementos de tratamento do projeto, se comprovadamente bem sucedidos, podem eventualmente levar a novos progressos com grande importância clínica no futuro.

Esperamos que, ao desenvolver uma metodologia de deteção precoce da doença de Parkinson e ao compreendermos melhor os mecanismos que levam à deterioração da função cerebral nesses doentes, possamos abrir uma porta para novos tratamentos

NOAM SHEMESH, COORDENADOR DO PROJETO GALARDOADO COM O PRÉMIO MANTERO BELARD 2020

Pretende, assim, desenvolver um tratamento inovador e trazer uma nova esperança para estes doentes?

Um dos maiores problemas das doenças neurodegenerativas é que são descobertas demasiado tarde e depois as opções de tratamento são muito limitadas. Não existem tratamentos capazes de impedir o aparecimento, travar a progressão ou alterar o decurso da doença. Assim, precisamos de muita investigação para compreender os mecanismos que levam ao seu aparecimento.Daí a importância do nosso projeto que visa a compreensão das relações básicas entre genes específicos e a Doença de Parkinson. A nossa investigação também pode trazer esperança para uma eventual aplicação como tratamento. Por isso, esperamos que, ao desenvolver uma metodologia de deteção precoce da doença de Parkinson e ao compreendermos melhor os mecanismos que levam à deterioração da função cerebral nesses doentes, possamos abrir a porta para novos tratamentos. Ou seja, para que surjam novos tratamentos que possam melhorar a vida destes doentes se forem aplicados numa fase precoce da doença.

Quando é que os doentes poderão beneficiar desta terapia?

Em hebraico, temos um ditado: “A profecia foi dada aos tolos”. É impossível prever quando é que estas terapias podem ser benéficas, mas temos a certeza de que o nosso projeto será um avanço no conhecimento e que ele próprio fará avançar a humanidade na procura de tratamentos. Podemos afirmar que o nosso projeto, pelo seu caráter inovador, irá trazer novas ideias que, no futuro, poderão ser adaptadas para intervenções terapêuticas nos doentes. Também acreditamos que a abordagem aqui apresentada é bastante geral e poderá abranger outras doenças neurodegenerativas.

Porque é que a sua equipa decidiu estudar a doença de Parkinson?

Porque é uma doença devastadora, generalizada e socialmente importante, que gera grande sofrimento nos doentes e nos seus familiares, além de acarretar, a nível mundial, um significativo esforço socioeconómico. Há alguns aspetos particulares que tornam a doença mais recetiva ao nosso tipo de investigação e é uma grande honra poder investigá-la com o generoso apoio da Santa Casa da Misericórdia de Lisboa através do Prémio Mantero Belard.

PRÉMIOS SANTA CASA NA ÁREA DAS NEUROCIÊNCIAS

Prémio Mantero Belard

Criado em 2013

Distingue a investigação científica ou clínica no âmbito das doenças neurodegenerativas, associadas ao envelhecimento, como Parkinson e Alzheimer, que possibilite o surgimento de novas estratégias no tratamento e restabelecimento das funções neurológicas.

Valor: 200 mil euros

Prémio Melo e Castro

Criado em 2013

Promove a descoberta de soluções para a reabilitação de lesões vertebromedulares de natureza traumática e não traumática (adquiridas ou congénitas).

Valor: 200 mil euros

Prémio João Lobo Antunes

Criado em 2017

Foi concebido como homenagem ao médico, neurocirurgião e cientista. Destina-se a licenciados em Medicina, em regime de internato médico, e visa estimular a cultura científica e a investigação clínica na área das Neurociências, sem esquecer o princípio de João Lobo Antunes relativo à humanização do ato médico, “os seus pacientes e as suas histórias”.

Valor: 40 mil euros

Fonte: Visão.