N. do T.: Trata-se de uma das mais amplas e melhores matérias já divulgadas acerca do dbs, recomenda-se a leitura da matéria na íntegra eis que, por motivos da extensão, aqui só foram traduzidos e publicados trechos mais relevantes.
A estimulação cerebral profunda (DBS) é uma terapia neurocirúrgica em que um fio fino com vários contatos de eletrodo na ponta é implantado cronicamente em estruturas cerebrais profundas e fornece pulsos elétricos (duração de 60-200 μs, amplitude de 1-5 V) a Alta frequência (tipicamente> 130 Hz) ao tecido cerebral circundante através de uma ou uma combinação de contatos de eletrodo. Estes pulsos elétricos interferem com os padrões patológicos de actividade neuronal das estruturas alvo, de modo que os sintomas da doença são reduzidos. DBS foi encontrado para ser um tratamento eficaz para distúrbios do movimento (especialmente para a doença de Parkinson, com mais de 100.000 pacientes implantados com dispositivos DBS em todo o mundo, mas também para tremor essencial, distonia por exemplo) e seu uso é investigado atualmente para uma grande variedade de outras condições de resistência aos fármacos, por exemplo, epilepsia, depressão, perturbação obsessivo-compulsiva, síndroma de Gilles de la Tourette, dor crönica, dependência e doença de Alzheimer (Benabid et al., 1991, 1993, 2000; Alba-Ferrara et al. , Figee et al., 2014, Huys et al., 2014, Kuhn et al., 2014, Laxpati et al., 2014, Riva-Posse et al., 2014). No entanto, como os mecanismos DBS ainda permanecem parcialmente desconhecidos e que os parâmetros terapêuticos ainda são largamente derivados por tentativa e erro, o potencial do DBS ainda não pode ser totalmente explorado. Um primeiro passo para desbloquear os mecanismos fundamentais do DBS é obter insight nos padrões de atividade e função dos circuitos cerebrais específicos envolvidos em condições fisiológicas e patológicas. Para abordar esta questão, combinar a modelagem computacional em vários níveis de descrição (do celular para as redes cerebrais de grande escala) com dados in vivo e clínicos aparece como uma abordagem promissora.
Nesta revisão, uma série de modelos computacionais são apresentados, com foco no uso de DBS na doença de Parkinson (DP). A razão para este foco é a extensão da população de DP que beneficia de DBS, o período em que os sintomas respondem à estimulação (o DBS tem um efeito quase imediato no tremor de DP, enquanto que na distonia pode levar várias semanas antes dos benefícios clínicos serem observados) , e a observabilidade dos efeitos do DBS sobre o controle motor. Note-se que, apesar deste foco na DP, conceitos gerais podem ser obtidos através destes estudos de modelagem que podem ser aplicáveis a outras aplicações de DBS no contexto de outras doenças neurológicas. (segue…)
DBS na doença de Parkinson
O primeiro relato sobre a eficácia da DBS na DP foi publicado pelo grupo de Benabid em 1987 (Benabid et al., 1987) e alguns anos mais tarde foi seguido por outros relatos de aplicações de DBS na DP assim como em outros tipos de transtornos do movimento (Benabid et al., 1991, Benabid et al., 1993). Os principais alvos para DBS em DP são o núcleo intermediário talâmico ventral (Vim), STN e GPi. Recentemente, GPe e o núcleo pedunculopontino (PPN) foram explorados (Davidson et al., 2014). A estimulação PPN é frequentemente aplicada em combinação com STN DBS para melhorar a marcha e a locomoção, que não são afetadas substancialmente pelo STN DBS sozinho (Beuter e Modolo, 2009). Vim-DBS é usado para tratar o tremor de DP, que pode produzir uma melhoria até 80%. DBS do GPi ou STN é utilizado para tratar todos os sintomas de DP, resultando em uma melhora média de 80% em tremor e discinesia, mais de 60% na bradicinesia e rigidez e aproximadamente 40-50% na marcha e disfunção postural (Benabid Et al., 2000). Tipicamente, a frequência DBS deve ser suficientemente elevada (> 130 Hz) para ser clinicamente eficaz. DBS aplicados a frequências inferiores a 60 Hz não mostraram efeito clínico, nem mesmo deterioraram os sintomas da DP e pioraram o desempenho motor (Rizzone et al., 2001, Mormer et al., 2002, Fogelson et al. , 2005, Eusebio et al., 2008).
Inicialmente, uma vez que o DBS apresentou benefícios terapêuticos semelhantes aos das lesões cirúrgicas, foi formulado a hipótese de que o mecanismo eficaz do DBS se baseou na inibição sináptica ou no bloqueio da despolarização (Breit et al., 2004, Dostrovsky e Lozano, 2002, et al., 2001, Heida et al., 2008, Kringelbach et al., 2007, Lozano et al., 2002, McIntyre et al., 2004a). DBS afeta indiferentemente vários elementos neurais, incluindo axônios mielinizados e não mielinados, dendritos e corpos celulares, que podem ser ativados diferencialmente. Um exemplo é a supressão aparente na queima STN somática, enquanto as fibras mielinizadas localizadas dentro do campo aplicado serão ativadas. A estimulação extracelular pode excitar ou bloquear axônios de passagem e a ativação da fibra resultará em propagação tanto antidrômica quanto ortodrômica (Chiken e Nambu, 2015; Hakimoto et al., 2003; McIntyre et al., 2004a). Contudo, devido à presença de artefatos de estimulação significativos, é complicado identificar os padrões de actividade que ocorrem durante a estimulação de STN a partir de gravações simultâneas em STN ou estruturas vizinhas. Portanto, as respostas após estouros curtos de estimulação são usadas para analisar efeitos de estimulação locais e globais. Os GP LFPs registados em doentes com DP despótica após neurocirurgia mostraram que a estimulação terapeuticamente eficaz suprime a atividade da banda beta no GP, sugerindo que o DBS pode modular padrões de atividade oscilatória entre o córtex e BG (Hering et al., 2009; Kringelbach et al., 2007; McIntyre et al., 2004a). Um novo método promissor na pesquisa experimental é o uso da optogenética: a luz pode ser usada para direcionar os neurônios individuais que foram geneticamente modificados, de modo que eles expressam canais iônicos sensíveis à luz, permitindo sua ativação e inativação precisas. Com esta técnica, Gardinaru et al. (2009) descobriram visando diferentes elementos do circuito cortical basal de gânglios em roedores hemiParkinsonianos que os aferentes para a região STN são um alvo principal de STN DBS. Em conclusão, os efeitos de DBS parecem muito mais complexos do que uma simples inibição da estrutura alvo, que se tornou aparente em parte através de esforços de modelagem. (segue…)
Conclusão
Estimulação cerebral profunda (DBS) tornou-se uma intervenção estabelecida para a doença de Parkinson. No entanto, o (s) mecanismo (s) exato (s) de DBS e o (s) local (is) ótimo (s) e parâmetros de estimulação ainda são questões abertas e, portanto, a maioria das terapias ainda é largamente baseada em tentativa e erro. Em uma tentativa de usar uma abordagem mais fundamentada, os modelos computacionais estão sendo cada vez mais aceitos e usados. Obviamente, cada modelo tem suas limitações, por exemplo, a cablagem real dentro da rede BG é muito mais complexa, não há heterogeneidade de neurônios e os efeitos da estimulação são simplificados. Apesar dessas simplificações, os modelos têm se mostrado úteis ao sugerir hipóteses sobre os mecanismos fisiopatológicos da DP e os potenciais mecanismos de ação da DBS. Foi demonstrado que a resposta neural aos campos de estimulação é complexa, dependendo de numerosos parâmetros geométricos, físicos e neurofisiológicos. Além disso, simulações de modelos têm demonstrado a viabilidade e o potencial terapêutico de DBS em malha fechada e sugerem que, num futuro próximo, DBS em malha fechada deve ser viável clinicamente e proporcionar benefícios clínicos melhorados, e pode até mudar segmentação das estruturas cerebrais profundas para mais alvos superficiais. Os métodos desenvolvidos até agora não podem ser facilmente utilizados na prática clínica, mas mostram que as estratégias de otimização podem explorar os parâmetros DBS espaço mais eficientemente do que ajustar as configurações manualmente. Além disso, sugere-se que, mesmo que dados conflitantes estejam presentes na literatura, o DBS de alta freqüência constante pode não proporcionar benefícios clínicos ótimos; Uma vez que tanto a taxa como o padrão de DBS podem desempenhar um papel importante na função DBS.
Os avanços na tecnologia de imagem (funcional), nos métodos de investigação experimental e clínica e na tecnologia informática permitirão aumentar a complexidade e o realismo dos modelos computacionais. Isso nos permitirá ainda gerar previsões testáveis e pode ajudar a formular novas hipóteses sobre os mecanismos da doença, não se limitando à DP, e paradigmas terapêuticos (específicos do paciente). Além disso, ser capaz de explorar esses mecanismos de interação entre a forma de onda de estimulação e o tecido cerebral possibilitaria uma terapia DBS otimizada, movida por mecanismo, que poderia ser proposta a um número muito maior de pacientes do que hoje. Original em inglês, tradução Google, revisão Hugo. Fonte: Scholarpedia.