Surabhi Nimbalkar, engenheira mecânica e aluna de doutorado no laboratório de Sam Kassegne, lava o material indesejado depois de desenvolver o polímero para produzir o eletrodo de carbono. |
Imagine ter um eletrodo incorporado ao seu cérebro em um procedimento cirúrgico que envolve a abertura de buracos no seu crânio para implantá-lo. Agora imagine fazer uma ressonância magnética para avaliação médica, quando o eletrodo de metal pode reagir aos campos magnéticos e vibrar, gerar calor ou até danificar o cérebro.
Essa é uma realidade que os pacientes que precisam de estimulação cerebral profunda podem enfrentar.
Agora, um estudo publicado em 18 de novembro na Nature Microsystems & Nanoengineering descreve uma melhoria promissora no procedimento desenvolvido pelos engenheiros da Universidade Estadual de San Diego, em colaboração com pesquisadores do Karlsruhe Institute of Technology (KIT) na Alemanha. A equipe de pesquisa da SDSU criou um eletrodo de carbono vítreo como uma alternativa à versão metálica, e novas descobertas mostram que ele não reage às ressonâncias magnéticas, tornando-o mais seguro.
Desenvolvida pela primeira vez em 2017 no laboratório MEMS do pesquisador Sam Kassegne na SDSU, a versão carbono foi projetada para durar mais tempo no cérebro sem ser corroída ou deteriorada e para emitir e receber sinais mais fortes. Em 2018, os pesquisadores mostraram que, embora o eletrodo de metal se degrade após 100 milhões de ciclos de impulsos elétricos aplicados a ele, o material de carbono vítreo sobreviveu a 3,5 bilhões de ciclos.
A estimulação cerebral profunda - onde eletrodos implantados no cérebro produzem impulsos elétricos que controlam movimentos anormais - está sendo cada vez mais usada para pessoas com distúrbios do movimento que não respondem a medicamentos, como pacientes com doença de Parkinson, tremores e contrações musculares descontroladas conhecidas como distonia.
Também está sendo considerado para lesões cerebrais traumáticas, dependência, demência, depressão e outras condições, portanto as possíveis aplicações são vastas.
Até agora, os eletrodos eram feitos de platina ou óxido de irídio. Mas esses eletrodos à base de metal podem produzir calor, interferir nas imagens de ressonância magnética, criando pontos brilhantes que bloqueiam as vistas da área real no cérebro em estudo e podem se magnetizar e se mover ou vibrar quando os pacientes são submetidos a exames, causando desconforto.
Carbono prova mais seguro
"Nossos testes de laboratório mostram que, diferentemente do eletrodo de metal, o eletrodo de carbono vítreo não é magnetizado pela ressonância magnética e, portanto, não irrita o cérebro do paciente", disse Surabhi Nimbalkar, primeiro autor e doutorado.
Além disso, ele pode ler sinais químicos e elétricos do cérebro, enquanto os eletrodos metálicos podem apenas ler sinais elétricos, de modo que o material de carbono é multimodal e compatível com RM.
"Ele deve ser incorporado por toda a vida, mas a questão é que os eletrodos de metal se degradam, por isso estamos estudando como fazê-lo durar uma vida", disse Kassegne, autor sênior e professor de engenharia mecânica da SDSU. “Inerentemente, o material de filme fino de carbono é homogêneo - ou um material contínuo -, portanto, possui muito poucas superfícies defeituosas. A platina tem grãos de metal que se tornam os pontos fracos vulneráveis à corrosão. ”
Os colaboradores do KIT desenvolveram um novo instrumento que permite medições precisas de vibrações durante a ressonância magnética. Trabalhando com a equipe da SDSU, eles puderam testar os novos eletrodos de carbono diretamente no scanner de ressonância magnética e confirmar que era uma alternativa melhor e mais segura. Essa colaboração permitiu testes extensivos de eletrodos para diferentes interações pela primeira vez.
Colaborações interdisciplinares
Kassegne, que possui uma patente para o processo de fabricação de eletrodos, trabalha com carbono de película fina em seu laboratório há mais de 10 anos, mas se envolveu em personalizá-lo para aplicações neurológicas quando colaboradores da Universidade de Washington e do Instituto de Massachusetts of Technology procurou por sua experiência em tecnologias de micro e nanofabricação.
Juntas, as três instituições fazem parte do Centro de Neurotecnologia, financiado pela National Science Foundation, que busca novas maneiras de ajudar o cérebro e a medula espinhal a curar e se recuperar de lesões.
O grupo de micro-ressonância magnética do KIT, liderado por Jan Korvink, trabalha com tecnologias de ressonância magnética para o cérebro, especificamente microscopia de ressonância magnética, um pré-requisito importante para analisar o comportamento desses pequenos eletrodos com detalhes de alta resolução. Kassegne e Korvink se conheceram em uma conferência e decidiram trabalhar juntos no projeto.
"Inventar maneiras de fazer a máquina de ressonância magnética ver mais detalhes do cérebro é a nossa principal missão", disse Korvink, autor sênior do trabalho.
Nimbalkar, um estudante de doutorado no laboratório de Kassegne, com duas patentes pendentes, se concentra no projeto e na fabricação de eletrodos que seriam compatíveis com o processo de ressonância magnética. Ela trabalhou com Marty Sereno, diretor do Centro de ressonância magnética da SDSU, para testar o material de carbono.
"Escaneamos os eletrodos usando diferentes técnicas de sequência de imagens e descobrimos que o carbono vítreo causa muito menos distorção da imagem", disse Sereno. “O metal perturba o campo magnético que causa distorção, mas a fibra de carbono tem menos correntes induzidas no campo magnético, portanto não exerce nenhuma força sobre o próprio eletrodo, o que é uma vantagem, pois está incorporado nos tecidos moles do cérebro."
Com os testes de laboratório concluídos, os colaboradores de Kassegne no lado clínico agora testam o eletrodo de carbono em pacientes, enquanto Nimbalkar e Kassegne trabalham no teste de diferentes formas de carbono a serem usadas em futuros eletrodos. Original em inglês, tradução Google, revisão Hugo. Fonte: Newscenter, com links e veja slideshow na fonte.