sábado, 29 de maio de 2021

Novo gel pode ser usado como spray nasal para o tratamento de pacientes com Parkinson

May 25 2021 - Cientistas da Universidade de York fizeram progressos significativos no desenvolvimento de um tratamento de spray nasal para pacientes com doença de Parkinson.

Os pesquisadores desenvolveram um novo gel que pode aderir ao tecido dentro do nariz junto com o medicamento levodopa, ajudando a administrar o tratamento diretamente ao cérebro.

A levodopa é convertida em dopamina no cérebro, o que compensa o déficit de células produtoras de dopamina em pacientes com Parkinson e ajuda a tratar os sintomas da doença. Após longos períodos de tempo, no entanto, a levodopa se torna menos eficaz e doses maiores são necessárias.

A droga usada atualmente para a doença de Parkinson é eficaz até certo ponto, mas após um longo período de uso, o corpo começa a decompor a droga antes que ela chegue ao cérebro, onde é mais necessária. Isso significa que é necessário aumentar a dosagem e, em fases posteriores, às vezes, em vez de comprimidos, a droga tem que ser injetada. As investigações sobre sprays nasais têm sido de interesse como uma aplicação mais eficaz por causa de sua rota direta para o cérebro através dos nervos que atendem o nariz, mas o desafio aqui é encontrar uma maneira de fazê-lo aderir ao tecido nasal por tempo suficiente para liberar uma boa dosagem da droga. "

David Smith, Professor, Departamento de Química, Universidade de York

Os pesquisadores criaram um gel carregado com levodopa, que poderia fluir para o nariz como um líquido e então rapidamente se transformar em uma fina camada de gel dentro do nariz. O método foi testado em modelos animais por uma equipe do King's College London, onde a levodopa foi liberada com sucesso do gel para o sangue e diretamente para o cérebro.

O professor Smith disse: "Os resultados indicaram que o gel deu à droga melhor adesão dentro do nariz, o que permitiu melhores níveis de absorção no sangue e no cérebro."

A equipe agora está trabalhando para incorporar esses materiais em dispositivos de spray nasal para progredir para testes clínicos em humanos. A abordagem também pode ser relevante para outras doenças neurodegenerativas, como Alzheimer.

Khuloud Al-Jamal, Professor de Entrega de Medicamentos e Nanomedicina do King's College London, disse: "Não apenas o gel teve um desempenho melhor do que uma solução simples, mas a captação pelo cérebro foi melhor do que a obtida com a injeção intravenosa do medicamento. Isso sugere que A administração nasal de drogas para Parkinson usando este tipo de gel pode ter relevância clínica." Original em inglês, tradução Google, revisão Hugo. Fonte: News-medical.

Associação entre depressão e risco de doença de Parkinson em adultos sul-coreanos

 28 May 2021 - Association between depression and risk of Parkinson's disease in South Korean adults.

sexta-feira, 28 de maio de 2021

A descoberta pode apontar para terapias para a doença de Parkinson

Pesquisadores da Universidade de Guelph descobriram uma forma chave pela qual a doença de Parkinson se espalha no cérebro

27-MAY-2021 - Uma nova descoberta dos pesquisadores da Universidade de Guelph pode ajudar a desenvolver novas terapias e melhorar a qualidade de vida das pessoas com doença de Parkinson.

Ao mostrar como proteínas emaranhadas nas células cerebrais permitem que a doença neurodegenerativa se espalhe, os pesquisadores esperam que suas descobertas levem a drogas que interrompam sua progressão, disse o candidato a PhD Morgan Stykel, primeiro autor de um artigo publicado este mês na Cell Reports.

A doença de Parkinson é a doença neurodegenerativa de crescimento mais rápido do mundo e o Canadá tem algumas das taxas mais altas do mundo, de acordo com Parkinson Canada. Sua causa exata é desconhecida.

As terapias atuais apenas tratam os sintomas, em vez de deter a doença, disse o Dr. Scott Ryan, professor do Departamento de Biologia Molecular e Celular que liderou o estudo.

A doença de Parkinson pode ser desencadeada pelo dobramento incorreto de uma proteína chamada alfa-sinucleína, que se acumula em uma parte do cérebro chamada substância negra. A doença causa perda de células nervosas no cérebro que produzem dopamina, um mensageiro químico que ajuda a controlar a função motora.

A alfa-sinucleína mal dobrada se agrega e eventualmente se espalha para outras partes do cérebro, prejudicando áreas responsáveis ​​por outras funções, como humor e cognição.

A equipe da U of G usou células-tronco para modelar neurônios com e sem doença de Parkinson e observar os efeitos das mutações da sinucleína.

Eles descobriram que nos neurônios de Parkinson, a sinucleína mal dobrada se liga a outra proteína chamada LC3B. Normalmente, LC3B tem como alvo proteínas mal dobradas para serem degradadas. Na doença de Parkinson, o estudo mostrou que LC3 fica preso nos agregados de proteína e é inativado.

Sem degradação, as células ejetam os agregados, que então se espalham para os neurônios próximos, propagando a doença por todo o cérebro.

"Normalmente, as proteínas mal dobradas são degradadas. Encontramos um caminho pelo qual a sinucleína está sendo secretada e liberada pelos neurônios, em vez de ser degradada", disse Ryan. "Esperamos retomar o caminho da degradação e impedir a propagação de doenças."

A equipe mostrou que a ativação de LC3B restaura a degradação, permitindo que as células eliminem as proteínas mal dobradas e evitem a propagação de doenças.

"A renovação regular de proteínas é parte de uma célula saudável", disse Stykel. "Com a doença de Parkinson, esse sistema não está funcionando corretamente."

Ryan disse que a descoberta pode ajudar na elaboração de terapias.

"Podemos não ser capazes de fazer nada sobre as regiões do cérebro que já estão doentes, mas talvez possamos parar de progredir. Podemos ser capazes de reativar o caminho da degradação e impedir a propagação da doença."

Ele alertou que outras vias bioquímicas também estão provavelmente envolvidas na propagação da doença pelo cérebro. Ainda assim, a descoberta fornece um alvo para o desenvolvimento potencial de drogas.LC3B

"A maioria das terapias atuais gira em torno do aumento da liberação de dopamina, mas isso funciona por um breve período e tem muitos efeitos colaterais", disse Ryan.

Esta pesquisa pode ajudar a melhorar a qualidade de vida dos pacientes com Parkinson. Muitos pacientes são diagnosticados na casa dos 40 ou 50 anos, o que significa que convivem com a doença progressiva por décadas.

“A redução da qualidade de vida pode ser um grande fardo para os pacientes, suas famílias e o sistema de saúde”, disse ele. Original em inglês, tradução Google, revisão Hugo. Fonte: Eurekalert.

FDA aprova IND para ketamina na discinesia da doença de Parkinson

 May 24, 2021 - FDA Approves IND for Ketamine in Parkinson Disease Dyskinesia.

Imunomodulador mostra promessa para a doença de Parkinson em um pequeno estudo

 May 27, 2021 - Immunomodulator Shows Promise for Parkinson Disease in Small Study.

A exposição ao dióxido de nitrogênio pode aumentar o risco de doença de Parkinson

MAY 27, 2021 - Nitrogen dioxide exposure may up risk for Parkinson disease.

segunda-feira, 24 de maio de 2021

Previsão de parâmetros de estimulação cerebral profunda ideal para a doença de Parkinson usando ressonância magnética funcional e aprendizado de máquina

24 May 2021 - Resumo

Normalmente usado para a doença de Parkinson (DP), a estimulação cerebral profunda (DBS) produz benefícios clínicos marcantes quando otimizada. No entanto, avaliar o grande número de configurações de estimulação possíveis (ou seja, programação) requer várias visitas à clínica. Aqui, examinamos se a ressonância magnética funcional (fMRI) pode ser usada para prever as configurações de estimulação ideais para pacientes individuais. Analisamos os dados de 3 T fMRI adquiridos prospectivamente como parte de um estudo observacional em 67 pacientes com DP usando configurações de estimulação ideais e não ideais. A estimulação clinicamente ideal produz um padrão de resposta cerebral fMRI característico marcado pelo envolvimento preferencial do circuito motor. Em seguida, construímos um modelo de aprendizado de máquina prevendo o ideal em comparação com configurações não ideais usando os padrões de fMRI de 39 pacientes com DP com DBS a priori clinicamente otimizado (88% de precisão). O modelo prevê configurações de estimulação ideais em conjuntos de dados invisíveis: pacientes com DP clinicamente otimizados a priori e sem estimulação. Propomos que as respostas do cérebro fMRI à estimulação DBS em pacientes com DP podem representar um biomarcador objetivo da resposta clínica. Após validação adicional com estudos adicionais, esses achados podem abrir a porta para a programação de DBS assistida por imagem funcional.

Introdução
A estimulação cerebral profunda (DBS) tornou-se um padrão de terapia de tratamento para distúrbios do movimento, particularmente doença de Parkinson (DP), tremor essencial e distonia, e está sendo investigada em distúrbios psiquiátricos e cognitivos, incluindo transtorno depressivo maior e doença de Alzheimer1,2. DBS envolve a colocação de um eletrodo para fornecer estimulação elétrica dentro de um circuito neural disfuncional para suprimir a atividade aberrante e / ou conduzir uma rede subativa. Apesar de seus benefícios reconhecidos, o mecanismo terapêutico de ação do DBS permanece incompletamente compreendido1.

O núcleo subtalâmico (STN), um hub integral no circuito do motor, é o alvo mais comum no PD-DBS3. O sucesso do DBS é criticamente dependente da aplicação da dose apropriada de estimulação no melhor local da região-alvo. A programação de DBS, o processo de titulação individual da dose de estimulação elétrica fornecida para alcançar benefícios clínicos máximos, permanece em grande parte um processo de tentativa e erro baseado em observações clínicas imediatas e experiência neurologista4,5. Algumas características clínicas respondem rapidamente à estimulação elétrica no PD-DBS, por exemplo, rigidez e, menos previsivelmente, tremor. Para outras deficiências, incluindo bradicinesia, postura anormal e dificuldades de marcha, onde pode haver benefícios lentos e progressivos, mas também efeitos deletérios, a programação empírica representa um desafio significativo4. Além da DP, a programação é particularmente difícil em pacientes com DBS para indicações como distonia, depressão e doença de Alzheimer, em que a resposta ao DBS normalmente ocorre de forma retardada e pode até estar clinicamente oculta por semanas a meses após o ajuste do parâmetro. Em cada caso, a programação do DBS requer várias visitas clínicas (normalmente a centros de saúde terciários) para testar o grande número de parâmetros possíveis e descobrir o ambiente que produz o maior alívio sintomático com o mínimo de efeitos colaterais4. Esse processo impõe um desgaste significativo de tempo e financeiro aos pacientes e aos sistemas de saúde6. Portanto, há uma necessidade de um marcador fisiológico que possa predizer rápida e precisamente a resposta clínica aos parâmetros DBS e melhorar a eficiência e diminuir a carga das práticas de programação atuais4.

Os avanços nas técnicas de neuroimagem aumentaram nossa compreensão dos efeitos fisiológicos do DBS sobre a atividade dos circuitos cerebrais (Tabela Suplementar 1). Uma vez que a ressonância magnética em pacientes com DBS está sujeita a diretrizes de segurança rígidas7, estudos têm aproveitado conectomas normativos para investigar retrospectivamente regiões e redes cerebrais cuja modulação está associada a benefícios clínicos8. A aquisição de imagens de ressonância magnética funcional prospectiva (fMRI) nesta população de pacientes tem sido amplamente limitada a estudos usando hardware de ressonância magnética abaixo do ideal devido a questões de segurança7. No entanto, avanços recentes estabeleceram a segurança e a viabilidade do uso de várias sequências de ressonância magnética em pacientes com DBS7,9 e permitiram um exame mais detalhado das consequências fisiológicas da aplicação de DBS em circuitos cerebrais específicos. A fMRI está sendo estudada agora para investigar as consequências da estimulação nas redes cerebrais10,11,12,13, mas ainda não foi usada para prever parâmetros de estimulação DBS ideais nem para aumentar diretamente o potencial terapêutico do DBS.

Neste trabalho, mostramos que dados prospectivos de fMRI podem identificar padrões de atividade cerebral associados a benefícios clínicos em pacientes com DP, servindo como um biomarcador da eficácia do DBS. Usamos fMRI para (1) identificar um padrão reprodutível do cérebro. Neste trabalho, mostramos que dados prospectivos de fMRI podem identificar padrões de atividade cerebral associados a benefícios clínicos em pacientes com DP, servindo como um biomarcador da eficácia DBS. Usamos fMRI para (1) identificar um padrão reproduzível de resposta do cérebro para estimulação DBS ideal e (2) prever configurações de DBS ideais com base nesses padrões de resposta do cérebro com um algoritmo de aprendizado de máquina (ML). Este algoritmo foi treinado em pacientes com DP já otimizados e testado em dois novos conjuntos de dados: um grupo de pacientes com DP otimizado para estimulação definida clinicamente a priori e um grupo de pacientes com DP sem estimulação.

Resultados
Com base em publicações anteriores que descrevem a segurança e a viabilidade da ressonância magnética em pacientes com DBS7,9,14,3 T dados de fMRI foram adquiridos prospectivamente ao longo de 203 sessões de fMRI (n = 67 pacientes com PD-DBS, Fig. 1, Tabela 1 ) Uma vez que STN é o alvo mais comum para DBS no tratamento de DP, recrutamos principalmente pacientes STN-DBS (n = 62). Também incluímos pacientes com DBS de globo pálido interno (GPi) (n = 5), que é um segundo local de estimulação comumente usado, para avaliar se diferentes alvos de PD-DBS também poderiam contribuir para o modelo de ML (Tabela 1). Cada sessão teve 6,5 min de duração e empregou um paradigma de ciclagem DBS-ON / OFF de 30 s repetido seis vezes em que a estimulação DBS unilateral esquerda foi administrada em contatos ou tensões específicos do paciente, clinicamente definidos ideais e não ótimos (Fig. 1C) . Conforme relatado anteriormente15, isso foi feito para diferenciar entre as alterações do sinal BOLD unilateral e contralateral, bem como para tentar imitar a programação do DBS, o que geralmente envolve a avaliação de um eletrodo de cada vez. Os dados de fMRI adquiridos foram pré-processados ​​usando um pipeline estabelecido que executou movimento e correção de tempo de corte (Fig. 2). O sinal dependente do nível de oxigênio no sangue (BOLD) foi extraído de 16 regiões de interesse motoras e não motoras (ROIs) determinadas a priori com base na literatura existente de PET e SPECT16,17,18,19 e nossa experiência com efeitos adversos (por exemplo, problemas de fala e distúrbios visuais) com configurações não ideais durante DBS fMRI20. Dado que estudos de fMRI foram realizados de forma incomum devido a questões de segurança, PET e SPECT informaram amplamente nossas escolhas de ROIs. Os valores t absolutos (alterações BOLD) foram normalizados por valores t médios positivos em áreas presumivelmente envolvidas em estimulação não ideal. Isso foi feito para comparar os valores t de DBS-ON de resposta BOLD vs. DBS-OFF de cada ROI entre os pacientes e para levar em conta os efeitos adversos - uma consideração importante, dado que o objetivo da programação do DBS é maximizar os benefícios do motor enquanto minimiza os efeitos adversos. Alterações BOLD normalizadas (recursos) de 39 pacientes clinicamente otimizados a priori (n = 35 STN-DBS e n = 4 GPi-DBS) e sua marcação binária associada (ideal vs. não ideal) foram usados ​​como entrada para treinar o modelo de ML (Fig. 2, Tabela 1). Configurações de DBS clinicamente ideais foram obtidas usando algoritmos publicados4,5. Posteriormente, dois conjuntos de dados fMRI invisíveis (n = 9 para cada conjunto de dados) - adquiridos com diferentes contatos ativos ou tensões - foram alimentados no modelo de ML treinado para fins de validação. A capacidade do modelo para determinar se uma configuração de DBS era ideal ou não ideal de acordo com o padrão de fMRI correspondente foi avaliada (Fig. 2). (segue…) Original em inglês, tradução Google, revisão Hugo. Fonte: Nature.


Um paciente DBS implantado com eletrodos DBS ativos e totalmente internalizados bilaterais direcionados ao STN. O cabo DBS (Medtronic 3387) tem quatro contatos (largura = 1,5 mm) espaçados 1,5 mm. Usando o programador DBS portátil, a programação DBS envolve a titulação da corrente fornecida ajustando vários parâmetros (isto é, contato do eletrodo, tensão, frequência e largura de pulso) a fim de fornecer o melhor alívio dos sintomas. B Imagem coronal ponderada em T1 demonstrando um paciente com DP com eletrodos DBS totalmente internalizados e ativos (azul) implantados no STN. Paradigma de projeto de bloco C fMRI usado durante a aquisição de dados 3 T fMRI. Enquanto o paciente estava deitado no scanner, a estimulação DBS unilateral (esquerda) foi ligada e desligada a cada 30 s por seis ciclos. O ciclo ON / OFF do DBS foi sincronizado manualmente para a aquisição de fMRI. Cada sequência de fMRI foi adquirida em contatos ou tensões ideais (verde) ou não ideais (vermelho). Neste exemplo, os quatro contatos foram selecionados com fMRI; o contato clinicamente ideal a priori (marcado em verde) e os contatos não ideais (marcado em vermelho) são mostrados. Estimulação cerebral profunda DBS, ressonância magnética funcional fMRI, doença de Parkinson.